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Abstract

Time-correlated single photon counting has recently been combined with mode-
locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy
emissions of single molecules in a flow stream. Maximum likelihood (ML) and least
Squares methods agree and are optimal when the number of detected photons is large
however, in single molecule fluorescence experiments the number of detected photons
can be less than 20, 67% of those can be noise and the detection time is restricted to 10
nanoseconds. Under the assumption that the photon signal and background noise are two
independent inhomogeneous Poisson processes, we derive the exact joint arrival time
probability density of the photons collected in a single counting experiment performed in
the presence of background noise. The model obviates the need to bin experimental data
for analysis, and makes it possible to analyze formally the effect of background noise on
the photon detection experiment using both ML or Bayesian methods. For both methods
we derive the joint and marginal probability densities of the fluorescent lifetime and
fluorescent emission. The ML and Bayesian methods are compared in an analysis of
simulated single molecule fluorescence experiments of Rhodamine 110 using different
combinations of expected background noise and expected fluorescence emission. While
_ both the ML or Bayesian procedures perform well for analyzing fluorescence emissions,
the Bayesian methods provide more realistic measures of uncertainty in the fluorescent
lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in
fluorescent lifetime estimates in current single molecule flow stream experiments where
the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be

automated for applications in molecular biology.
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Introduction

In the last six years it has become possible to record temporal data from
individual fluorescent dye molecules in flow streams and to estimate single molecule
fluorescent lifetime and energy emissions’. Perfection of this technology should
significantly enhance the analytic sensitivity of fluoroimmunoassays, capillary zone
electrophoresis, flow cytometry, DNA fingerprinting, fragment sizing seque’ncing.2’3’4’5
Proper application of the single molecule fluorescence techniques in these detection-
systems requires accurate assessment of the uncertainty in the measurement of the
molecule's lifetime and energy emission. As a consequence, there is much interest in
characterizing the statistical properties of photon data collected in single molecule
excitation <=:xperirnents.6’7’8

Hall and Selinger9 studied the general problem of decay lifetime estimation and
derived equations for the maximum likelihood (ML), method of moments and least
squares (LS) estimations of the parameters in an inhomogeneous Poisson process model
of photon detection in the absence of background noise. They also reported large sample
formulae for the variances of these estimators, and showed that the ML estimation
procedure was the most statistically efficient and that it was also computationally
tractable. Peck et al.6 studied single molecule fluorescence detection with the signal and
background noise processes modelled as two independent homogeneous Poisson
processes and described an autocorrelation procedure for burst detection. Tellinghuisen
and Wilkerson® studied the performance of ML and LS methods for estimating
fluorescent lifetimes using an arrival time model in the case where N, the numbers of
detected photons, is small and 7, the observation time, is finite. They found that both
estimates were biased and that the variance of the ML estimate was formally divergent.
They suggest that the (N/ N -1) bias in the reciprocal of the lifetime parameter could be

easily corrected and that statistical models parameterized in terms of this parameter were

more analytically tractable. TellinghuisenmAstudied the properties of least squares (LS)
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techniques for estimating fluorescent lifetimes in the presence of background noise using
Monte Carlo methods and partial derivative matrices to perform error analyses. He
reported that background noise reduced the precision in the lifetime estimate by an order
of magnitude and that this measurement precision could be recovered by incofporating
into the analysis a model of the background noise derived from the ‘study of the detection
system studied in the absence of a ﬂuorescent experiment.

In the study of photon bursts from single Rhodamine 110 dye molecules dissolved
in methanol, Tellinghuisen et al.l® compared the use of an approximate arrival time plus
background noise model analyzed with LS methods to an arrival time noise free model
analyzed by ML procedures. In their LS analysis the error in the reciprocal of the lifetime
parameter exceeded the N7 expected for data collected over an infinite time interval in
the absence of background noise. Because the model analyzed with the LS methods
included background noise and because problems in the parameter estimation could be
readily diagnosed with contour plots of the minimum x> function, these alithors
concluded that the LS approach offered the preferred means of analyzing the effect of
background noise in single molecule fluorescence experiments.

The principal analytic issues to be addressed are: (1) proper specification of a
probability model for photon detection from single molecules in the presence of
background noise; and (2) formulation of a statistical estimation procedure based on that
model which allows accurate determination of single molecule fluorescent emissions and
lifetime when emissions are low background noise is significant and the detection
interval is finite. There is significant evidence to suggest that detection of photon from
single fluorescent molecule may be modelled a Poisson process.>¢ Therefore, under the
assumption that the signal and background noise are two independent inhomogeneous
Poisson processes, we derive the exact joint probability density of photon arrivals in a
finite time interval from a single fluorescent molecule derive both ML and Bayesian

procedures for estimating the fluorescence lifetime energy emission and their associated
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uncertainties in terms of well defined probability densities. We compare the ML and
Bayesian methods in an analysis of simulated data from Rhodamine 110 for various

combinations of expected fluorescence emissions and background noise.

Model Derivation

We assume that the arrival times of the photons from a single fluorescent
molecule are recorded in a finite interval [0,7]. Let ¢ be the arrival time of the i*
photon, where 0<#,...,<#; <T. We assume that the number of photons detected from the
fluorescent species is a Poisson process with continuous intensity function A(s)= 4e™"/®,
for +>0. The parameter t is the average fluorescent lifetime and 4 is the number of
photons detected at time 0. Let A(r)= _l; Mu)du. The quantity A(D)is the average
fluorescence emission in the observation intefval (0,7]. We assume that the number of
background photons detected is a Poisson process with a continuous intensity function
q(t), t>0.Forms of ¢(r) which have been reported include the constant function and a
function composed of a linear combination of two Gaussian functions, and exponential
function and a constant. Let Q)= _Eq(u)du. We assume that ¢(r) is known from
background photon measurements made on the detection system in the absence of the

fluorescent molecules. We assume also that

lim Eq(u)du =0 1)

b—>w

Equation (1) is a technical assumption which ensures that the joint, conditional and
marginal probability densities of the arrival times are well defined. Under the assumption
that the fluorescence emission and background noise processes are independent, the
number of photons arriving from both is a Poisson process with intensity function

11
M) +q(2).
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From the derivation in the Appendix, it follows that the joint probability density

of the photon arrival times is

1 T
fr, 4) = H[’»(ti) +q(t;)]exp{- _Ll(u) +q(u)du} )
i=1

where = (t,...,t;)7.

Equation 7(2) showé that the joint probability density of the photon arrivals may be
represented without the need to bin the data. The derivation of this equation in the
Appendix may be viewed as taking the number of bins equal to the number of detected
photons, placing the #” photon arrival in a bin of width A;, and letting the widths of all
bins go to zero. Equation (2) may give the appearance that the 7 ’s are a collection of
independent observations on the interval (0,77, howéver, they are not. Their joint

robability density is defined on R’ subject to the constraint that 0<#, < yees<ty < T <.
p ) 1<h T

Statistical Analysis of Experimental Data
Maximum Likelihood Approximation of the Fluorescent Lifetime and Energy Emission
Probability Densities.

From the joint arrival time density we can estimate t+ and 4 by the method

maximum likelihood. The log likelihood based on the joint arrival time density is

I
log f(#]T, 4) = Y log(A(t;) +4(1;)) ~[A(T) + Q(T)] 3)

i=l1

and the ML estimates can be obtained numerically by finding the values of t and 4 which
maximize equation (3).
Under the assumption that 4 is large we can derive approximate probability

densities for « and 4.° Let u, =@, 4)7 be the ML estimates of t and 4 respectively and
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define x = (v, 4) . The observed information matrix G is the 2x2 matrix whose elements are

—0° log £ (1, 4) _ —8*log f(f], 4) ~8” log f(#[, 4)
Gy = -——-——-—-—5;5— » Ga=Gy= ——&r-—aA————-—- and Gy =T . It follows
from the large sample theory of ML estimates that the approximate joint probability

density of © and 4 is the Gaussian density defined as

Fite, Al = —— expt= L (- )V x- )}

V2

4.
where ¥ =G7! and |V| is the determinant of ¥ . The marginal probability density of
f(xl0), is the Gaussian density with mean % and variance equal to ¥;;, i.e. the 7,7 element

of V. To compute the approximate probability density of A(7), we define the

transformation

)
and its Jacobian

1 0
J =
AN-QA+De Ty -

The determinant of J is |J|=t1(1-¢"7/*). Applying the change of variables in equation
(5) to fi(r, 49 under the assumption that is 4 large, shows that the approximate joint

probability density of « and A(T) is the Gaussian density defined as
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A AMDI) = ——expt-1 (r-1,) 2 p-p,)}

275! z IZ (6)

where ¥ =JvJT. The approximate marginal probability density of A(T) is the Gaussian

density with mean A(T) and variance Z, .

Bayesian Estimation of the Fluorescent Lifetime and Energy Emission Probability
Densities. .

To conduct a Bayesian analysis of the lifetime and energy emission estimation
problem we assume that knowledge about « and 4 known prior to the experiment can be
summarized in terms of a prior probability density.12 Since the fluorescent lifetime is
independent of 4, the number of photons observed at time 0, we write the joint prior
density of t and 4 as the product of two locally uniform prior densities defined

as f(t,4) = f(1)f(4) where,

(-1 ustTy
0 otherwise

-]

(N
(Az--Al)“1 AlﬁASAz
0 otherwise

f(4)= {
The values of 1;,1,,4; and 4, are defined from known properties of the particular single
molecule experiment. Applying Bayes theorem equations (2) and (7) yields the joint
posterior density of

_fOf(AD A4 ~
Si(z, 4l) = I0) ®
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where f(t)= j _[ JF@Sf(ADSf (T, A)dAdr .
TA

Equation (7) shows that the locally uniform prior densities can be used to
constrain the parameter valves to a region in the - 4 plane which is physically plausible.
Equation (8) shows that the uncertainty in the parameter defined by the Bayesian analysis
is the product of the ranges defined by the prior densities and the uncertainty in or
information about the parameters derived from the experiment, and summarized in the
likelihood function f(#|1, 4) . That is, the Bayesian analysis combines prior information
with that collected in the experiment to determine the uncertainty in the model
parameters. Because the prior density is uniform on the t1- 4 plane and because the
likelihood and log likelihood are equivalent summaries of the experimental information,
then if the experiment contains a lot of information about the model parameters then the
uncertainty in the model parameters defined by the ML and Bayesian analyses will agree.

" The posterior probability density of the fluorescent lifetime is obtained by

integrating (8) with respect to 4 to giving
fGlD = Ifl(f, Alt)d4 ©)
A
Since we are interested in A(7) instead of 4 we apply the change of variables defined by

equation (5) and find that the joint posterior probability density of the fluorescent lifetime

and fluorescent emission is

Fae NI = = file, AT 0=l (10)

The marginal posterior density of A(T) is

AADIH = [ HGADIDE (1
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Equations (9) and (11) define the uncertainty in the fluorescent lifetime and energy
emission respectively in terms of probability densities without having to make large

sample assumptions. The respective modes, medians and means of fi(tl9) and £ (A(T)|0)

may be used as point estimates of t and A(7) for any set of experimental data ¢.

Simulation Study of Rhodamine 110 Single Molecule Fluorescence Detection

We compared the ML and Bayesian methods in a study of simulated single
molecule fluorescence experiments for Rhodamine 110 assuming an expected fluorescent
lifetime and detection interval of 4.2 and 10 nanoseconds respectively based on
Tellinghuisen, et. al.' reported background noise fractions as higher as 0.67 in their
experiments. Therefore, we simulated three levels of expected background noise fraction:
high = 0.70, moderate = 0.35 and none = 0 corhbined with each of four levels of expected
fluorescence emission: low = 19.1, medium =191, moderate =952 énd high =3812
photons 10 nanoseconds. These expected fluorescence emission levels are the values of
A(T) obtained with 4 set respectively to 5, 50, 250 and 1000 with t=4.2 and 7=10. We
let ¢(¢) =1, , a constant function, whose value was determined for any given specification

of the expected background noise fraction and expected fluorescence by the relation

P ¥
A +A,T (12)

where nf is the expected background noise fractionand A, 7=0(7).

For each combination of nf and A(T)we simulated 3 detection experiments (36 in
total) using the thinning algorithm of Lewis and Shedler.”® ML estimation was carried out
by a combination quasi-Newton’s method and local search procedure to insure that the
absolute maximum of the likelihood was found in each computation. The Bayesian

analysis were carried out by rectangular integration procedures. For the Bayesian analysis
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we took t;=0andt, =12 nanoseconds in the prior density for f(r). Given previous
reports on the fluorescent lifetime of Rhodamine 110, it is reasonable to assume that
would lie in this interval.'® For f(4) we chose four different representations for both

4, and 4, depending on value of 4 used in the simulations (Table 1).
Table 1 about here

To assess how closely the Bayesian posterior probability densities deviated from
Gaussian behavior we report their measures of skewness and kurtosis. The skewness of a
probability density of a random variable X is the normalized third moment defined as
E(X -p)® /o> where p is the mean and o? is the variance. The kurtosis of the probability
density is the normalized fourth moment defined as E(X —p)*/o* -3. The skewness is a
measure of asymmetry in that if the skewness is >0(<0) the probability density is right
(left) skewed and is symmetric if the skewness is zero. The kurtosis measures the
- probability content in the tail of the probability density relative to that in a Gaussian
density with the same mean and variance. The closer the kurtosis is to zero, then the

closer the probability density is to a Gaussian density.

Maximum Likelihood Analysis

As nf decreased and ef increased, the precision in both the fluorescent lifetime and
energy emission estimates increased (Table 2). The CV's of the lifetime and energy
emission estimates decreased respectively from 58% and 46.8% (nf= 0.70 and ¢f = 19.1)
to 2.68% and 1.61% (nf= 0.0 and ¢f = 3812). In all the simulations the true values of
and A(T) are covered by the 0.95 confidence intervals based on the maximum likelihood
estimates (mean + 2SD). The widths of the 95% confidence intervals (4sD) fort ranged
from 8.4 ns (nf= 0.35 and ¢f = 19.1) to 0.44 ns ( nf =0.0 and ¢f = 3812). The absolute

widths of the 0.95 confidence intervals for A(T) increased with increasing values of A(T)
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however, the length of the interval as a percentage of A(T) decreased from 93.6% (nf =
0.70 and ef= 19.1) to 3.3% ( #»f=0.0 and ¢f= 3812) , i.e. twice the CV's. Due to their low
signal to noise ratio the simulations with ef= 19.1 ga\.'e point estimates of « which agreed
least with the intended value of 4.2 ns. The increase in estimation precision of ¢ and
A(r) with decrease in »f and increase in e¢f is shown in Figure 1. The estimated joint
density for »f = 0.35 and e¢f = 19.1 has approximately 10% of its support on negative
values of 1 and A(T) because the Gaussian approximation based on the ML estimates is -
not restricted to positive values (Figure 1A). Across all the simulations the approximate
joint densities of ¢ and A(T) have slight positive correlations (0.31 to 0.35) for nf= 0.70
(Figures 1A, D and G) whereas the two estimates were uncorrelated for nf= 0.0 (Figures

1C,F and I).

Table 2 about here.

Figure 1 about here.

Bayesian Analysis

For the Bayesian analysis as nf decreased and ef increased, the precision in both
the fluorescent lifetime and energy emission estimates also increased (Table 3 and Figure
2). The CV's of the lifetime and energy emission estimates decreased respectively from
53.8% and 41.5% (ef = 19.1 and nf = 0.35) to 2.7% and 1.6% (ef = 3812 and »f= 0.0). In
all the simulations the true values of t and A(T)are covered by the 0.95 credibility
intervals, i.e. the Bayesian equivalent of the 0.95 confidence intervals.'? All the joint
posterior probability densities for e¢f =952 and 3812 appeared to be Gaussian: Their plots
agree with those for the corresponding ML estimates (Figures 1G, 1H, 11, 2G, 2H and 2I)
and their skewness and kurtosis values are all close to zero. Similarly, for the simulations
in which ¢f= 191 and nfequal to 0.35 or 0.0, there was good agreement between the ML

and Bayesian probability density estimates (Figures 1E and 1F, and Figures 2E and 2F).
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between the ML and Bayesian probability density estimates (Figures 1E and 1F, and
Figures 2E and 2F).

Table 3 about here.

Figure 2 about here.

For ¢f =19.1 for all values of nf and for ¢f =191 and »f = 0.70 the Bayesian-
estimates of the joint probability densities oft and A(7) are highly non-Gaussian
(Figures 2A-2D and 2G). The marginal probability densities for A(T) are nearly Gaussian
for these four combinations of ¢f and nf and these densities are in very good agreement
with their ML counterparts (Tables 2, 3 and Figure 3). The non-Gaussian nature of the
joint posterior probability density stems mostly from the uncertainty in t as shown in
Figurés 2A-2D and indicated by the non-zero values for the skewness and kurtosis
obtained in these simulations (Table 2). All four of the marginal probability densiﬁes of
1 are right skewed, i.e. positive skewness. In the simulations for ¢f = 19.1 and »f =0.70
and 0.35, the uncertainty in t defined by the posterior probability density is due
primarily to the prior density. The respective 0.95 credibility intervals for t in these two
simulations extends from 0.14 to 11.4 ns and from 2.3 to 11.7 ns. These findings suggest
that under these low signal to noise experimental conditions the data contain only.

minimal information about the molecule's fluorescent lifetime.
Figure 3 about here.

Discussion
Our approach provides an exact probability model of the photon arrival times
observed with background noise and makes explicit the relation between the counting

process, arrival time and conditional arrival time probability densities. This model avoids
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the need to bin data and extends the analysis provided [] and [] by making possible ML
and Bayesian analyses which consider the background noise in the estimation of the
excited species lifetime and energy emission. Both procedures measure the uncertainty in
these quantities based on data from the photons collected from single molecule in a single
experiment.

Our ML analysis gives explicit formulae for the change in precision of the
lifetime estimates as a function of the signal intensity, background noise and detection -
interval. ML analysis of experimental data provides the most efficient use of
experimental information and as such, is the preferred approach provided the ML
computations are numerically tractable the experiment is highly informative about the
model parameters relative to the known prior to the experiment. Inferences about
uncertainty in model parameters can be made from ML theory as long as the appropriate
asymptomatic assumptions are satisfied. Contrary to the suggestion by Tellinghuisen et
al., our results show that ML estimation for single molecule lifetime and energy emission
and is highly tractable procedure which can be carried out efficiently using a quasi-
Newton's methods. Hall and Selinger showed that when the observation interval is finite
the large sample properties of the ML estimate of t and 4 are not of order 7/ but of order
A. Our ML analysis extends their result by showing that the result also hold when the
data consist of a Poisson signal plus Poisson background noise model observed in finite
time.

While the ML and Bayesian procedures will give similar parameter and
uncertainty estimates when the expected signal intensity is large, our simulation study
shows that when the number of detected photons is small, the Bayesian procedures
provide a more reliable uncertainty assessment of uncertainty. The Bayesian procedure
makes it possible to combine prior information about the most probable range to © and 4
prior to the experiment with the information on these parameters summarized in the

likelihood. In particular, the Bayesian procedure trades the large sample assumptions



page 15: Brown, Zhang, McCollom; TR 94-03; Single Molecule F luorescence Measurements

required by the ML error analysis for the more realistic one that the fluorescent lifetime
and energy emission—where the latter is implicitly defined by © and 4- lie within given
intervals. As we have shown, this interval may be specified based on the known
properties of the experimental paradigm. The Bayesian procedure suggests therefore, a
preferred alternative when the expected signal intensity is low and as a consequence,vthe
large sample assumptions needed to justify the ML analysis cannot be satisfied.

While either the Bayesian or ML procedures works well for analyzing
fluorescence emissions, the Bayesian methods provide more realistic measures of
uncertainty in the fluorescent lifetimes for any combination of background noise and
fluorescence emission. The Bayesian methods should provide more realistic assessments
of uncertainty in fluorescent lifetime estimates in current single molecule flow stream
experiments where the expected fluorescence emission can be in the low to medium

range. Both the ML and Bayesian algorithms can be automated for real-time applications.
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Appendix

To derive the joint probability density of photon arrival times we consider the
event that 7 photons arrive in (0,7] at times 0<¢ <#,,...,<#; < T. This probability density
is defined by the events that no arrivals occur in the intervals (0,4],(; +As;,t,,,] for
i=1,..,/-1 and (t; +At;,T], and that exactly one arrival occurs in each of the intervals
(t,4; +Ay] for i=1,...,1. By the definition of an inhomogeneous a Poisson process the

following statements describe the probabilities of these events:

Pr(No arrival in (0,4]) = exp{— _El AMu) + q(u)du}

Pr(No arrival in (t; + At;1]) = exp{— IM Mu) + g(u)du} (A1)
i+AL;

i+ Al i+AL
Pr(One arrival in (t;,t; + At;]) = I A(w) + q(u)du exp{- J: Aw) + q(u)du}
i i

The intervals are nonoverlapping and thus, independent by the basic axioms of a Poisson

process. The joint probability of the events is therefore,

! 1 I i+l
Sl Jas= expt- J; M) +q(u)di] Jexpt- f
i=1 !

i=1

T
" MO a@ddent- [ 26 +q)di

(A2)

1 1

I o " 1
<[] f’+A" Mz) + q(u)duexpi— f P )+ q(a)did + o[ Tat
i i i=1

i=1

i
where ¢=(t,,...,ty)T . Dividing both sides by []A and letting A, — 0 for each i gives

i=1

the joint probability density of the arrival times
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! T
£t 4) = [ + ate)lexst- [ 20+ g expi- [RICEVOLE

i=1

I-1 )
XH exp{— [ Hl M) + g(u)du} (A3)
i=1 !
I T
ol § (2O LIS RIGEFIOLS (A4)
i=1

for 0<¢ <,...,<t; < T, where we used the fact that

j+AL
J: Au) +q(u)du
At

= Me) +4q(1;) (A5)

as Ay —>.o, for all i.
Conditional Arrival Time Probability Density

The observed photon arrival time data may also be analyzed in terms of the
conditional arrival time probability density. That is, given I photon arrivals detected in
(0,7] , what are the probable locations of the arrivals in that interval? The number of
photons arriving in (0,71, N(T), is distributed as a Poisson random variable with parameter
~ A(T) . From equation (A4) and the properties of a Poisson process the conditional arrival

time probability density is

f(tt, 4, D) =Pr{0<t; <,...,<t; <T and N(T)=I}/Pr{N(T) = I}

I
T Trrc) + g(elexpi—ig Mu)+q(u)du}

- il . (A6)
[A(T)+ QDY exp{-IA(T) +Q(T)]}/ 1! |




page 18: Brown, Zhang, McCollom; TR 94-03; Single Molecule Fluorescence Measurements

I
B [YORTI

i=1

(A + (Y (A7)

In the case where the Poisson intensity parameter is constant and the observation interval
is divided into & bins, equation (A6) is a k-nominal probability mass function.

Similarly, the log likelihood for the conditional arrival time density in equation (A6)

I
log £ (¢]7, 4,1) = ) log(A(#;) +q(t;)) — I 1og[ A(T) + @(T))]
i<l (A8)

+log(1Y).

Equation (A8) may also be used for ML estimation of * and 4.
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Figure Legends

Figure 1. The maximum likelihood estimates of the joint probability densities of * and

A(T). For row one (A, D, G) nf=0.70, for row two (B, E, H) nf=0.35 and row three (C,
F,I) nf =0. For column one (A, B, C) ¢ = 19.1, for column two (D, E, F) ef =191 and
for column three (G, H, I) of =952.

Figure 2. The Bayesian joint posterior probability densities of © and A(7T). For row one
(A, D, G) nf=0.70, for row two (B, E, H) nf=0.35 and for row three (C, F, I) »f=0. For
column one (A, B, C) ¢ =19.1, for column two (D, E, F) ¢f =191 and column three (G,
H,I) ¢ =952.

Figure 3. The maximum likelihood ( ) and Bayesian (---------- ) marginal
probability density estimates of t and A(T). Panels A and D, »=0.70 and ef =19.1;
Panels B and E, »f =0.35 and ¢f =191; Panels C and F, »f =0.0 and ef =952.
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